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PATIENT INFORMATION

 Patient ID:

 Name:

 Year of birth: 1958

 Primary Tumor Site: gastric

 Histology Type: adenocarcinoma

 Metastatic sites: liver

MEDICAL TEAM

Treating Physician: 

Molecular Pharmacologist: István Peták, MD PhD

Genetic Counselor: Júlia Déri, MSc

Molecular Biologist: Edit Várkondi, PhD

Consulting Physician: Gábor Pajkos, MD CSc

Case Coordinator: Réka Czető

Biochemical Engineer: Barbara Dudás, MSc

Info-bionics Engineer: Anna Dirner, MSc

PATHOLOGICAL AND MOLECULAR DIAGNOSTIC TESTS

Sample ID:  (histological sample)

Sample source: primary tumor

Sampling type: biopsy

Tumor type: gastric adenocarcinoma

Sample ID: 

Sample source: circulating cell-free DNA isolated from blood

Sampling type: liquid biopsy

Tumor type: gastric adenocarcinoma

Tests performed:

NGS - 591 genes 

Total variants identified: 7051

Variant count after filtering: 33

MSI test (NGS-based) - MSS (microsatellite stable) 

TMB - low: 3.05 mutations/Mb 

Previous tests performed:

IHC - MLH1 lack of expression (with G168-728 antibody); PMS2 lack of expression (with MRQ-28 antibody); MSH2 normal expression (with G219-

1129 antibody); MSH6 normal expression (with SP93 antibody) (22H2478)

IHC - PD-L1 overexpression (CPS=2 with SP263 antibody) (22H2478)

IHC - ERBB2++ expression (22H2478)

FISH - ERBB2 amplification absence (HER2/neu signals: 1.3) (22H2478)

PREVIOUS THERAPIES

1st line: FOLFOX

2nd line: PEMBROLIZUMAB

SUMMARY

Oncompass Report of , 1958 diagnosed with gastric adenocarcinoma has been completed for digital drug assignment and 

treatment planning purposes using the Realtime Oncology Treatment Calculator.
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SUMMARY

The following molecular tests were used for our analysis:

ONCOMPASS ONCODRIVER assay (NGS-591) was carried out from liquid biopsy 

Previous IHC (ERBB2, MLH1, MSH2, MSH6, PMS2, PD-L1) and HER2 FISH tests were performed on histological sample of the primary tumor 

(22H2478).

 

Tumor-agnostic biomarkers/immunotherapy-related biomarkers:

The tumor is , , and .MSS TMB-low (3.05 mutations/megabase) PD-L1 positive (CPS=2 with SP263 antibody)

IHC results of the tumor: MLH1 (Lack of Expression, with G168-728 antibody), PMS2 (Lack of Expression, with MRQ-28 antibody)

Loss of expression of PMS2 alone is indicative of a defect in the PMS2 gene. However, the combined loss of PMS2 and MLH1 suggests the 

defect lies in MLH1, as MLH1 is responsible for the stability of PMS2. According to clinical data, immunotherapies with PD-1 and PD-L1 inhibitors 

proved to be effective in . Mutational signature analysis has been performed on the filtered variants of the NGS results MMR deficient tumors

and identified a significant fraction of the variants fit to  associated with defective DNA mismatch repair, which might support  Signature 6

immunotherapy. In addition, in the present sample was detected that is located  1 frameshift mutation in an NMD-resistant position (KMT2D-

, thus, the emergence of a 365-amino-acid neopeptide is likely, that could sensitize cells for immunotherapy via generating P565fs*365)

neoantigens.

NIVOLUMAB, in combination with chemotherapy, is approved as a first-line treatment for metastatic gastric, GEJ, and esophageal 

adenocarcinoma with PD-L1 overexpression combined positive score (CPS)  5 according to the EMA approval and irrespective of the PD-L1 

expression according to the FDA-approval. In a phase Ib study  combinational therapy reached 44% response rate (11nivolumab + regorafenib

/25) in heavily treated, microsatellite stable gastric cancer patients (KRAS status was not examined). In the EPOC1706 phase II trial, the 

combination of  (multi tyrosine kinase inhibitor)  showed anti-tumor activity in patients with advanced gastric lenvatinib and pembrolizumab

cancer as a first- or second-line treatment. Objective response was observed in 20 (69%) of 29 patients (1 complete response (CR) and 19 partial 

responses (PR)), and stable disease was observed in 9 patients (31%), median PFS was 7.1 months. Response rates were 84% in patients with PD-

L1 overexpression, and 40% in patients with normal PD-L1 expression. In a phase II trial, the efficacy and safety of lenvatinib plus pembrolizumab 

were evaluated in patients with advanced gastric cancer, who received at least 2 prior lines of therapy. PD-L1 positivity was detected in 71% of 

the patients. The ORR was 10%. One patient had CR (3%), two had a PR (6%) and 12 patients (39%) had stable disease (SD). Disease control rate 

(DCR) was 48%, median PFS was 2.5 months, median OS was 5.9 months.

NTRK fusions were not detected in the tested sample.

BRAF-V600E mutation was not detected during the molecular test.

The detected ERBB2-V842I mutation may cause resistance to immunotherapy.

 

Tumor-specific on-label biomarkers:

TRASTUZUMAB is registered in HER2-positive gastric and gastroesophageal junction (GEJ) tumors. TRASTUZUMAB DERUXTECAN is registered 

by the FDA in patients with locally advanced or metastatic HER2-positive gastric or GEJ adenocarcinoma after treatment with trastuzumab. 

Pembrolizumab was granted accelerated approval for use in combination with trastuzumab and fluoropyrimidine- and platinum-containing 

chemotherapy for the first-line treatment of patients with locally advanced unresectable or metastatic HER2-positive gastric or gastroesophageal 

junction adenocarcinoma.

The tumor is . However, based on the NGS results, the tumor is  mutant and based on previous IHC it is HER2 IHC negative ERBB2-V842I Her2l

ow ++, FISH negative.

 

Histology-based on-label treatments independent of the molecular profile:

Nivolumab is  approved in FDA combination with fluoropyrimidine- and platinum-containing chemotherapy as a frontline treatment for patients 

with advanced or metastatic gastric cancer, GEJ cancer, and esophageal adenocarcinoma independent of PD-L1 expression status.

RAMUCIRUMAB is an approved VEGFR2 inhibitor with paclitaxel in gastric adenocarcinoma.

Lonsurf is a chemotherapeutic agent approved for gastric or GEJ adenocarcinoma patients, who have been previously treated with at least two 

prior systemic treatment regimens for advanced disease.

 

Based on the NGS results, the following additional results could be relevant as off-label treatments:

ERBB2-V842I driver (AEL: 525.65, AF/TR: 4.22%/NA) is a pathogenic alteration. It is an activating mutation in the kinase domain. In colorectal 

cancer cell lines, the variant caused resistance against cetuximab and panitumumab, but is was sensitive to neratinib or afatinib. The mutation 

was not sensitive to trastuzumab.  HER2 inhibitors in clinical use are  TRASTUZUMAB, PERTUZUMAB, LAPATINIB, T-DM1, 

AFATINIB, MARGETUXIMAB and NERATINIB. HER2 activation causes resistance against EGFR inhibitor monotherapies.
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SUMMARY

According to the ClinVar database,  is a likely pathogenic alteration. The mutation affects FGFR2-C382R driver (AEL: 67.40, AF/TR: 7.21%/NA)

the transmembrane domain of the FGFR protein, resulting in gain of function that causes oncogenic transformation in cellular experimental 

systems and is sensitive to FGFR2 inhibition. Based on a case study, an intrahepatic cholangiocarcinoma patient carrying C382R mutation 

showed partial response to pemigatinib.

For gain of function FGFR mutations, FGFR inhibitors may be effective. Multi-tyrosine kinase inhibitors  in clinical use that inhibit the FGFR 

signaling pathway include LENVATINIB, NINTEDANIB, PAZOPANIB, REGORAFENIB, and PONATINIB, and are less specific than SORAFENIB and 

SUNITINIB. The FDA-approved FGFR inhibitor in the indication of urothelial tumors is ERDAFITINIB.

The detected  nonsense mutation alteration is listed as pathogenic in the ClinVar ARID2-R1272* driver (AEL: 15.52, AF/TR: 2.96%/NA)

database, in association with Coffin-Siris syndrome. It is located in an NMD-resistant position. Preclinical results suggest that ARID2 deficiency 

sensitizes to PARP inhibition and to cisplatin and etoposide.

According to the ClinVar database,  is a likely pathogenic alteration. In the presence of DNMT3A-W297* driver (AEL: 11.26, AF/TR: 9.77%/NA)

this nonsense mutation, loss of function is highly likely. In the case of DNMT3A loss-offunction mutations, DOT1L target gene and pinometostat 

agent can be mentioned in positive association.

SMARCA4-R1077* driver (AEL: 10.76, AF/TR: 3.18%/NA) nonsense mutation t is a likely pathogenic alteration. In case of its loss-of-function 

alterations, indirect targets can be mentioned in positive association. According to preclinical data, SMARCA2 (BRM), EZH2, or AURKA inhibition 

might be effective in SMARCA4 mutant cancers.

KMT2D-P565fs*365 driver (AEL: 9.48, AF/TR: 3.33%/NA) frameshift mutation is located in an NMD-resistant position. According to preclinical   

evidence, KMT2D-deficiency sensitizes to the non-chemotherapeutic agent AICAR (aminoimidazole-carboxamideribonucleotide). AICAR is an 

AMP homolog, that inhibits angiogenesis and induces apoptosis through activating the protein AMPK, and thereby inhibits tumor growth. AICAR 

treatment proved to be effective in a clinical trial involving B-cell chronic lymphocytic leukemia patients.

ARID1A-Q766fs*67 driver (AEL: 7.62, AF/TR: 3.03%/NA) is not listed in the ClinVar database. Loss of function is highly likely in the presence of 

this frameshift alteration. According to a study, higher TMB values and higher PD-L1 expression was found in ARID1A mutant gastrointestinal (GI) 

tumors, than in ARID1A-wildtype GI cancers. PD-L1 inhibitors have been shown to be more efficient in ARID1A mutant mouse models than in wild-

type ones. EZH2, YES1, PI3K/AKT, and PARP inhibitors are also in positive association with ARID1A inactivation. ARID1A loss is in synthetic lethal 

interaction with dasatinib, a compound in clinical use.

 

Several other alterations were identified and classified as non-driver or variant of unknown significance. The role and significance of these 

alterations are not clear, however, their contribution to tumorgenesis cannot be ruled out.

There was no relevant copy number variation detected in the examined sample. 

 

Based on the histology, molecular profile, and DDA, the following treatments could be considered:

Pembrolizumab therapy is ongoing, which is supported by the previously detected MMRdeficiency status and CPS 2 score as well as ARID1A-

Q766fs*67 stop mutations identified by NGS.

Pathogenic mutations were not identified in MLH1 or PMS2 genes. Based on the NGS it is not considered MSI-H. Germline testing for the MMR 

genes may still be warranted as a separate test to confirm or rule out Lynch syndrome.

Additional treatment option: Trastuzumab deruxtecan off-label due to the HER2-low status (++ designated in MSD) and ERBB2-V842I mutation 

could be considered (the identified ERBB2-V842I alteration and ++ HER2low status may not show sensitivity to trastuzumab). 

Adding HER2 inhibitors, such as trastuzumab deruxtecan to pembrolizumab due to the HER2-low status (++ designated in MSD) and ERBB2-

V842I mutation could be considered. Immunotherapy and ERBB2 inhibitors combined are synergistic.

FGFR2 aberrations are becoming important biomarkers in certain tumor types such as bladder and cholangiocarcinoma.

There is a pan-FGFRinhibitor local trial with immunotherapy in gastric cancer  https://clinicaltrials.gov/ct2/show/NCT04604132 A Phase 1b/2 Study 

of Derazantinib as Monotherapy and Combination Therapy With Paclitaxel, Ramucirumab or Atezolizumab in Patients With HER2-negative 

Gastric Adenocarcinoma Expressing FGFR2 Genetic Aberrations (unfortunately, prior PD-L1 inhibitor use is not allowed.

Another interesting international clinical trial is with Bemarituzumab looking for FGFR2b overexpression in gastric cancer https://clinicaltrials.gov

/ct2/show/NCT05052801

We cannot tell from this NGS if there is overexpression of FGFR2b (it would need additional IHC) but there is an FGFR2 activating mutation.
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MOLECULAR TARGET ANALYSIS

MOLECULAR ALTERATIONS

  PD-L1  protein  overexpression driver (AEL: 731.66, AF/TR: NA/NA),

  ERBB2-V842I driver (AEL: 525.65, AF/TR: 4.22%/NA),

  MLH1  protein  lack of expression driver (AEL: 190.54, AF/TR: NA/NA),

  PMS2  protein  lack of expression driver (AEL: 122.64, AF/TR: NA/NA),

  FGFR2-C382R driver (AEL: 67.40, AF/TR: 7.21%/NA),

  ARID2-R1272* driver (AEL: 15.52, AF/TR: 2.96%/NA),

  DNMT3A-W297* driver (AEL: 11.26, AF/TR: 9.77%/NA),

  SMARCA4-R1077* driver (AEL: 10.76, AF/TR: 3.18%/NA),

  KMT2D-P565fs*365 driver (AEL: 9.48, AF/TR: 3.33%/NA),

  ARID1A-Q766fs*67 driver (AEL: 7.62, AF/TR: 3.03%/NA),

  FBXO11-I520fs*15 driver (AEL: 5.05, AF/TR: 2.93%/NA),

  KMT2D-R3547C VUS in a driver gene (AEL: 4.48, AF/TR: 3.26%/NA),

  KMT2D-P2363del VUS in a driver gene (AEL: 4.48, AF/TR: 3.88%/NA),

  CHEK2-C324W VUS in a driver gene (AEL: 3.52, AF/TR: 50.75%/NA),

  KMT2C-R254C VUS in a driver gene (AEL: 2.00, AF/TR: 3.89%/NA),

  TET2-S1760del VUS in a driver gene (AEL: 1.79, AF/TR: 2.46%/NA),

  BTK-N172I VUS in a driver gene (AEL: 1.08, AF/TR: 45.45%/NA),

  AR-G326C VUS in a driver gene (AEL: 0.49, AF/TR: 2.6%/NA),

  TNFAIP3-V19L VUS in a driver gene (AEL: 0.31, AF/TR: 49.39%/NA),

  LRP1B-P3015L VUS in a driver gene (AEL: 0.22, AF/TR: 2.93%/NA),

  PPARG-L171F VUS in a driver gene (AEL: 0.20, AF/TR: 50.64%/NA),

  RECQL5-M512I VUS in a driver gene (AEL: 0.07, AF/TR: 45.92%/NA),

  DMD-K3200R VUS in a driver gene (AEL: 0.07, AF/TR: 2.51%/NA),

  DMD-R3436C VUS in a driver gene (AEL: 0.07, AF/TR: 2.62%/NA),

  CSMD3-E13D VUS in a driver gene (AEL: 0.02, AF/TR: 48.33%/NA),

  FAT3-R894Q variant of unknown significance (AEL: 0.00, AF/TR: 

50.25%/NA),

  RPTOR-A210T variant of unknown significance (AEL: 0.00, AF/TR: 

50.46%/NA),

  BCL6-E164D variant of unknown significance (AEL: 0.00, AF/TR: 48.55%

/NA),

  DCC-R201Q variant of unknown significance (AEL: 0.00, AF/TR: 2.86%

/NA),

  WDCP-H648R variant of unknown significance (AEL: 0.00, AF/TR: 

45.28%/NA),

  JUN-S37fs*69 variant of unknown significance (AEL: 0.00, AF/TR: 

2.43%/NA),

  CYP2D6-R380H variant of unknown significance (AEL: 0.00, AF/TR: 

30.48%/NA),

  CUBN-G599S variant of unknown significance (AEL: 0.00, AF/TR: 

4.09%/NA),

  ABCC2-S281N variant of unknown significance (AEL: 0.00, AF/TR: 

47.97%/NA),

  SLC22A2-V5M variant of unknown significance (AEL: 0.00, AF/TR: 

50.78%/NA),

  KIT-M541L non-driver (AEL: -20.20, AF/TR: 99.91%/NA)

TARGET GENES

  ERBB2  wild-type (AEL: 1136.13),

  ERBB2-V842I  driver (AEL: 525.65)

  CD274  wild-type (AEL: 806.61),

  MLH1  protein  lack of expression  driver (AEL: 190.54) ;

  ERBB2-V842I  driver (AEL: -525.65) ;

  ARID1A-Q766fs*67  driver (AEL: 7.62) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66) ;

  TET2-S1760del  VUS in a driver (AEL: -1.79) ;

  PMS2  protein  lack of expression  driver (AEL: 122.64)

  PD-1  wild-type (AEL: 610.30),

  ERBB2-V842I  driver (AEL: -525.65) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66) ;

  PMS2  protein  lack of expression  driver (AEL: 122.64) ;

  MLH1  protein  lack of expression  driver (AEL: 190.54)

  PARP1  wild-type (AEL: 54.08),

  CHEK2-C324W  VUS in a driver (AEL: 3.52) ;

  ARID1A-Q766fs*67  driver (AEL: 7.62) ;

  ARID2-R1272*  driver (AEL: 15.52) ;

  KMT2D-R3547C  VUS in a driver (AEL: 4.48) ;

  RECQL5-M512I  VUS in a driver (AEL: 0.07) ;

  KMT2D-P2363del  VUS in a driver (AEL: 4.48) ;

  KMT2C-R254C  VUS in a driver (AEL: 2.00) ;

  KMT2D-P565fs*365  driver (AEL: 9.48)

  EZH2  wild-type (AEL: 23.87),

  SMARCA4-R1077*  driver (AEL: 10.76) ;

  ARID1A-Q766fs*67  driver (AEL: 7.62)

  KDM1A  wild-type (AEL: 18.97),

  SMARCA4-R1077*  driver (AEL: 10.76) ;

  ARID1A-Q766fs*67  driver (AEL: 7.62)

  DOT1L  wild-type (AEL: 13.16),

  DNMT3A-W297*  driver (AEL: 11.26)

  SMARCA2  wild-type (AEL: 11.65),

  SMARCA4-R1077*  driver (AEL: 10.76)

  PPARG  wild-type (AEL: 8.68),

  PPARG-L171F  VUS in a driver (AEL: 0.20)

  AKT1  wild-type (AEL: 8.20),

  ARID1A-Q766fs*67  driver (AEL: 7.62)

  YES1  wild-type (AEL: 8.14),

  ARID1A-Q766fs*67  driver (AEL: 7.62)

  SOD1  wild-type (AEL: 4.67),

  CHEK2-C324W  VUS in a driver (AEL: 3.52)

  BRD4  wild-type (AEL: 4.14),

  KMT2C-R254C  VUS in a driver (AEL: 2.00)

  NFKB1  wild-type (AEL: 1.27)

  TNFAIP3-V19L  VUS in a driver (AEL: 0.31)
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DRUGS WITH THE HIGHEST AEL SCORES DRUGS WITH THE LOWEST AEL SCORES

DRUGS IN CLINICAL USE

 PEMBROLIZUMAB (skin - Merkel cell carcinoma (MCC) [FDA]; all - 

mediastinal B-cell lymphoma [FDA]; breast - all [FDA+EMA]; lung - non-

small cell carcinoma [FDA+EMA]; skin - squamous cell carcinoma 

[FDA]; all - Hodgkin lymphoma [FDA+EMA]; kidney - renal cell 

carcinoma [FDA+EMA]; all - malignant melanoma [FDA+EMA]; bile duct 

- all [EMA]; lung - adenocarcinoma [FDA+EMA]; cervix - all [FDA+EMA]; 

rectum - all [FDA+EMA]; gastroesophageal junction - adenocarcinoma 

[FDA+EMA]; all - endometrioid carcinoma [FDA+EMA]; head-neck - 

squamous cell carcinoma [FDA+EMA]; esophagus - carcinoma 

[FDA+EMA]; gastric - adenocarcinoma [FDA+EMA]; colon - all 

[FDA+EMA]; lung - squamous cell carcinoma [FDA+EMA]; biliary tract - 

all [EMA]; all - endometroid carcinoma [FDA+EMA]; all - 

cholangiocarcinoma [EMA]; esophagus - squamous cell carcinoma 

[FDA+EMA]; gastric - all [EMA]; all - urothelial carcinoma [FDA+EMA]; 

liver - hepatocellular carcinoma [FDA]; endometrium - all [FDA+EMA]; 

  small intestine - all [EMA]) (AEL: 10178.32)

  PD-1  wild-type  target (AEL: 610.30) ;

  PMS2  protein  lack of expression  driver (AEL: 122.64) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66) ;

  MLH1  protein  lack of expression  driver (AEL: 190.54)

 NIVOLUMAB (all - urothelial carcinoma [FDA+EMA]; head-neck - 

squamous cell carcinoma [FDA+EMA]; lung - non-small cell carcinoma 

[FDA+EMA]; esophagus - squamous cell carcinoma [FDA+EMA]; bone 

marrow - Hodgkin lymphoma [FDA+EMA]; rectum - all [FDA+EMA]; liver 

- hepatocellular carcinoma [FDA]; kidney - renal cell carcinoma 

[FDA+EMA]; gastroesophageal junction - adenocarcinoma [FDA+EMA]; 

esophagus - adenocarcinoma [FDA+EMA]; gastric - adenocarcinoma 

[FDA+EMA]; all - malignant melanoma [FDA+EMA]; colon - all 

 [FDA+EMA];  pleura - mesothelioma [FDA+EMA]) (AEL: 4028.22)

  MLH1  protein  lack of expression  driver (AEL: 190.54) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66) ;

  PD-1  wild-type  target (AEL: 610.30)

 ATEZOLIZUMAB (all - malignant melanoma [FDA]; breast - all [EMA]; 

soft tissue - alveolar soft part sarcoma (ASPS) [FDA]; lung - non-small 

cell carcinoma [FDA+EMA]; liver - hepatocellular carcinoma 

[FDA+EMA]; lung - small cell carcinoma [FDA+EMA]; all - urothelial 

  carcinoma [EMA]) (AEL: 3538.09)

  CD274  wild-type  target (AEL: 806.61) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66)

 AVELUMAB (kidney - renal cell carcinoma [FDA+EMA]; bladder - 

urothelial carcinoma [FDA+EMA]; ureter - all [FDA+EMA]; bladder - all 

[FDA+EMA];  skin - Merkel cell carcinoma (MCC) [FDA+EMA]) (AEL: 

 1780.69)

  PD-L1  protein  overexpression  driver (AEL: 731.66) ;

  CD274  wild-type  target (AEL: 806.61)

 TRASTUZUMAB DERUXTECAN (gastroesophageal junction - 

adenocarcinoma [FDA+EMA]; gastric - adenocarcinoma [FDA+EMA]; 

lung - adenocarcinoma [FDA]; lung - non-small cell carcinoma [FDA]; 

  breast - all [FDA+EMA]) (AEL: 1719.56)

  ERBB2  wild-type  target (AEL: 1136.13) ;

  ERBB2-V842I  driver (AEL: 525.65)

  TRASTUZUMAB EMTANSINE  (breast - all [FDA+EMA]) (AEL: 1703.30)

  ERBB2-V842I  driver (AEL: 525.65) ;

  ERBB2  wild-type  target (AEL: 1136.13)

  MOBOCERTINIB  (lung - adenocarcinoma [FDA]) (AEL: 1661.88)

  ERBB2-V842I  driver (AEL: 525.65) ;

  ERBB2  wild-type  target (AEL: 1136.13)

 DURVALUMAB (biliary tract - all [FDA+EMA]; lung - adenocarcinoma 

[FDA+EMA]; lung - small cell carcinoma [FDA+EMA]; liver - 

hepatocellular carcinoma [FDA+EMA]; lung - squamous cell carcinoma 

[FDA+EMA]; lung - non-small cell carcinoma [FDA+EMA]; all - 

  cholangiocarcinoma [FDA]) (AEL: 1631.80)

  PD-L1  protein  overexpression  driver (AEL: 731.66) ;

  CD274  wild-type  target (AEL: 806.61)

 DOSTARLIMAB (all - endometrial carcinoma [FDA]; all - endometrioid 

carcinoma [EMA]; all - solid carcinoma [FDA]; endometrium - all 

 [FDA+EMA];  all - solid [FDA]) (AEL: 963.48)

  PMS2  protein  lack of expression  driver (AEL: 122.64) ;

  MLH1  protein  lack of expression  driver (AEL: 190.54) ;

  PD-1  wild-type  target (AEL: 610.30)

DRUGS IN CLINICAL USE

 PANITUMUMAB (rectum - all [FDA+EMA];  colon - all [FDA+EMA]) (AEL: 

 -1184.83)

  ERBB2-V842I  driver (AEL: -525.65) ;

  EGFR  wild-type  target (AEL: -601.26)

 CETUXIMAB (head-neck - squamous cell carcinoma [FDA+EMA]; colon 

 - all [FDA+EMA];  rectum - all [FDA+EMA]) (AEL: -1184.83)

  EGFR  wild-type  target (AEL: -601.26) ;

  ERBB2-V842I  driver (AEL: -525.65)

 ERLOTINIB (pancreas - all [FDA+EMA]; lung - adenocarcinoma 

[FDA+EMA]; lung - non-small cell carcinoma [FDA+EMA]; lung - 

  squamous cell carcinoma [FDA+EMA]) (AEL: -1125.34)

  EGFR  wild-type  target (AEL: -601.26) ;

  ERBB2-V842I  driver (AEL: -525.65)

  TAMOXIFEN  (breast - all [FDA]) (AEL: -673.37)

  ERBB2-V842I  driver (AEL: -525.65) ;

  ESR1  wild-type  target (AEL: -69.79) ;

  FGFR2-C382R  driver (AEL: -67.40)

  PALBOCICLIB  (breast - all [FDA+EMA]) (AEL: -536.56)

  ERBB2-V842I  driver (AEL: -525.65)

  FULVESTRANT  (breast - all [FDA+EMA]) (AEL: -536.32)

  ERBB2-V842I  driver (AEL: -525.65)

  INFIGRATINIB  (all - cholangiocarcinoma [FDA]) (AEL: -228.64)

  FGFR2-C382R  driver (AEL: -67.40) ;

  FGFR2  wild-type  target (AEL: -158.97)

 ZANUBRUTINIB (all - small lymphocytic lymphoma [FDA]; all - marginal 

zone lymphoma [FDA+EMA]; all - lymphoplasmacytic lymphoma 

[FDA+EMA]; all - chronic lymphocytic leukemia (CLL) [FDA+EMA]; all - 

  mantle cell lymphoma [FDA]) (AEL: -205.73)

  BTK  wild-type  target (AEL: -207.07)

 ACALABRUTINIB (all - chronic lymphocytic leukemia (CLL) [FDA+EMA]; 

all - mantle cell lymphoma [FDA]; all - small lymphocytic lymphoma 

  [FDA]) (AEL: -205.32)

  BTK-N172I  VUS in a driver (AEL: -1.08) ;

  BTK  wild-type  target (AEL: -207.07)

 IBRUTINIB (all - mantle cell lymphoma [FDA+EMA]; all - 

lymphoplasmacytic lymphoma [FDA+EMA]; all - small lymphocytic 

lymphoma [FDA+EMA]; all - chronic lymphocytic leukemia (CLL) 

 [FDA+EMA];  all - marginal zone lymphoma [FDA]) (AEL: -201.18)

  BTK  wild-type  target (AEL: -207.07) ;

  BTK-N172I  VUS in a driver (AEL: -1.08)
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DRUGS WITH THE HIGHEST AEL SCORES DRUGS WITH THE LOWEST AEL SCORES

 TRASTUZUMAB (breast - all [FDA+EMA]; gastric - adenocarcinoma 

[FDA+EMA];  gastroesophageal junction - adenocarcinoma [FDA+EMA])

 (AEL: 552.56)

  ERBB2  wild-type  target (AEL: 1136.13) ;

  ERBB2-V842I  driver (AEL: -525.65)

 OLAPARIB (ovary - all [FDA+EMA]; peritoneum - all [FDA+EMA]; breast - 

all [FDA+EMA]; prostate - all [FDA+EMA]; pancreas - all [FDA+EMA]; 

  fallopian tube - all [FDA+EMA]) (AEL: 106.45)

  CHEK2-C324W  VUS in a driver (AEL: 3.52) ;

  KMT2C-R254C  VUS in a driver (AEL: 2.00) ;

  PARP1  wild-type  target (AEL: 54.08)

 RAMUCIRUMAB (gastroesophageal junction - adenocarcinoma 

[FDA+EMA]; liver - hepatocellular carcinoma [FDA+EMA]; lung - 

adenocarcinoma [FDA+EMA]; rectum - all [FDA+EMA]; gastric - 

 adenocarcinoma [FDA+EMA];  colon - all [FDA+EMA]) (AEL: 16.44)

 TAS-102 (gastroesophageal junction - adenocarcinoma [FDA+EMA]; 

colon - all [FDA+EMA]; rectum - all [FDA+EMA]; gastric - 

  adenocarcinoma [FDA+EMA]) (AEL: 9.89)

 REGORAFENIB (gastroesophageal junction - gastrointestinal stromal 

tumor (GIST) [FDA+EMA]; gastric - gastrointestinal stromal tumor (GIST) 

[FDA+EMA]; rectum - all [FDA+EMA]; liver - hepatocellular carcinoma 

[FDA+EMA]; esophagus - gastrointestinal stromal tumor (GIST) 

 [FDA+EMA];  colon - all [FDA+EMA]) (AEL: 5.97)

DRUGS IN CLINICAL DEVELOPMENT

  POZIOTINIB (AEL: 1689.84)

  ERBB2  wild-type  target (AEL: 1136.13) ;

  ERBB2-V842I  driver (AEL: 525.65)

  TARLOXOTINIB (AEL: 1667.55)

  ERBB2-V842I  driver (AEL: 525.65) ;

  ERBB2  wild-type  target (AEL: 1136.13)

  PYROTINIB (AEL: 1662.03)

  ERBB2  wild-type  target (AEL: 1136.13) ;

  ERBB2-V842I  driver (AEL: 525.65)

  BINTRAFUSP ALFA (AEL: 1576.69)

  CD274  wild-type  target (AEL: 806.61) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66)

  TORIPALIMAB (AEL: 1481.95)

  PD-1  wild-type  target (AEL: 610.30) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66)

  SINTILIMAB (AEL: 1479.40)

  PD-1  wild-type  target (AEL: 610.30) ;

  PD-L1  protein  overexpression  driver (AEL: 731.66)

  SUGEMALIMAB (AEL: 806.87)

  CD274  wild-type  target (AEL: 806.61)

  PACMILIMAB (AEL: 806.61)

  CD274  wild-type  target (AEL: 806.61)

  TIRAGOLUMAB (AEL: 761.26)

  PD-L1  protein  overexpression  driver (AEL: 731.66)

  TISLELIZUMAB (AEL: 611.44)

  PD-1  wild-type  target (AEL: 610.30)

DRUGS IN CLINICAL DEVELOPMENT

  BRILANESTRANT (AEL: -605.90)

  ERBB2-V842I  driver (AEL: -525.65) ;

  ESR1  wild-type  target (AEL: -69.79)

  MEHD7945A (AEL: -601.26)

  EGFR  wild-type  target (AEL: -601.26)

  NIMOTUZUMAB (AEL: -601.26)

  EGFR  wild-type  target (AEL: -601.26)

  TESEVATINIB (AEL: -601.26)

  EGFR  wild-type  target (AEL: -601.26)

  ROCILETINIB (AEL: -526.07)

  ERBB2-V842I  driver (AEL: -525.65)

  NAZARTINIB (AEL: -526.07)

  ERBB2-V842I  driver (AEL: -525.65)

  Debio1347 (AEL: -227.24)

  FGFR2  wild-type  target (AEL: -158.97) ;

  FGFR2-C382R  driver (AEL: -67.40)

  DOVITINIB (AEL: -226.71)

  FGFR2-C382R  driver (AEL: -67.40) ;

  FGFR2  wild-type  target (AEL: -158.97)

  DTRMWXHS-12 (AEL: -207.07)

  BTK  wild-type  target (AEL: -207.07)

  GDC-0853 (AEL: -207.07)

  BTK  wild-type  target (AEL: -207.07)

Compound scores displayed represent aggregated evidence levels (AEL). AEL represents the number, scientific impact and clinical relevance of evidence relations in the system, connecting 

tumor types, molecular alterations, targets and compounds. Individual evidence relation scores are normalized and weighted according to the degree of similarity of the parameters to the 

parameters of the given patient case. Compound AELs are obtained by aggregating all relevant associations (and AELs) between the specific compound, tumor type, drivers and targets. 

Compounds are listed in descending order of their AELs.

( Abbreviations: AEL - aggregated evidence level, AF - allele frequency, TR: tumor ratio )

ANALYZED MOLECULAR PROFILE

MUTANT GENES

ABCC2-S281N, AR-G326C, ARID1A-Q766FS*67, ARID2-R1272*, BCL6-E164D, BTK-N172I, CHEK2-C324W, CSMD3-E13D, CUBN-G599S, CYP2D6-

R380H, DCC-R201Q, DMD-K3200R, DMD-R3436C, DNMT3A-W297*, ERBB2-V842I, FAT3-R894Q, FBXO11-I520FS*15, FGFR2-C382R, JUN-
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S37FS*69, KIT-M541L, KMT2C-R254C, KMT2D-P2363DEL, KMT2D-P565FS*365, KMT2D-R3547C, LRP1B-P3015L, PPARG-L171F, RECQL5-M512I, 

RPTOR-A210T, SLC22A2-V5M, SMARCA4-R1077*, TET2-S1760DEL, TNFAIP3-V19L,  WDCP-H648R

WILD TYPE GENES

ABCB1, ABL1, ABL2, ABRAXAS1, ACVR1B, ACVRL1, ADGRB3, AGTRAP, AIP, AKAP9, AKT1, AKT2, AKT3, ALK, AMER1, AMPH, APC, APEX1, ARAF, 

ARFRP1, ARID1B, ASXL1, ATM, ATP11B, ATP4A, ATP6V0D2, ATR, ATRX, AURKA, AURKB, AXIN1, AXIN2, AXL, B2M, BAP1, BARD1, BAX, BAZ2B, 

BCL2, BCL2L1, BCL2L11, BCL2L2, BCL9, BCOR, BCORL1, BCR, BIRC2, BIRC3, BLM, BMPR1A, BRAF, BRCA1, BRCA2, BRD4, BRIP1, BTG1, BUB1B, 

CARD11, CASP8, CASR, CBFB, CBL, CBLB, CBLC, CCDC178, CCDC6, CCN6, CCND1, CCND2, CCND3, CCNE1, CD274, CD74, CD79A, CD79B, 

CDA, CDC27, CDC73, CDH1, CDK12, CDK4, CDK6, CDK8, CDKN1A, CDKN1B, CDKN1C, CDKN2A, CDKN2B, CDKN2C, CEBPA, CEP57, CHD1, 

CHD2, CHD4, CHD7, CHEK1, CHIC2, CIC, CIT, CREBBP, CRKL, CRLF2, CSF1R, CSNK2A1, CTCF, CTNNA1, CTNNB1, CUL3, CYLD, CYP19A1, 

CYP2A6, CYP2B6, CYP2C19, CYP2C9, DAXX, DCUN1D1, DDB2, DDR1, DDR2, DDX11, DDX3X, DICER1, DIS3L2, DOT1L, DPYD, DSE, ECT2L, EED, 

EGFR, ELMO1, EML4, EMSY, EP300, EPCAM, EPHA2, EPHA3, EPHA5, EPHA7, EPHB1, ERBB3, ERBB4, ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, 

ERG, ERRFI1, ESR1, ESR2, ESRP1, ETV6, EXOC2, EXT1, EXT2, EZH2, EZR, FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, 

FANCL, FANCM, FAS, FAT1, FBXO32, FBXW7, FGF10, FGF14, FGF19, FGF23, FGF3, FGF4, FGF5, FGF6, FGF9, FGFR1, FGFR3, FGFR4, FH, FLCN, 

FLT1, FLT3, FLT4, FN1, FOXA1, FOXL2, FOXO1, FOXP1, FRS2, FSTL5, FUBP1, FZD3, G6PD, GABRA6, GALNT17, GAS6, GATA1, GATA2, GATA3, 

GATA4, GATA6, GEN1, GID4, GLI1, GNA11, GNA13, GNAI2, GNAQ, GNAS, GNAT2, GOPC, GPC3, GPR78, GREM1, GRIN2A, GRM3, GRM8, GSK3B, 

GSTP1, GXYLT1, H3F3A, HGF, HIST1H3B, HNF1A, HOXB13, HRAS, HSD3B1, HSP90AA1, HSPH1, IDH1, IDH2, IFITM1, IFITM3, IGF1R, IGF2, IGF2R, 

IGSF10, IKBKE, IKZF1, IKZF4, IL2RA, IL2RB, IL2RG, IL6, IL6ST, IL7R, INHBA, INPP4B, IRAK4, IRF2, IRF4, IRS2, ITCH, JAK1, JAK2, JAK3, KAT6A, 

KDM4B, KDM5A, KDM5C, KDM6A, KDR, KEAP1, KEL, KIAA1549, KIF5B, KLF6, KLHL6, KMT2A, KNSTRN, KRAS, KREMEN1, LAMA2, LCK, LMO1, 

LPAR2, LRRK2, LTK, LYN, LZTR1, MAGI2, MAGI3, MAGOH, MAP2K1, MAP2K2, MAP2K4, MAP3K1, MAP3K4, MAP4K3, MAP7, MAPK1, MAPK3, 

MAS1L, MAX, MCL1, MDM2, MDM4, MED12, MED13, MEF2B, MEN1, MET, MIER3, MITF, MLH1, MLLT3, MPL, MRE11, MSH2, MSH3, MSH6, MST1R, 

MTOR, MUC16, MUTYH, MYC, MYCL, MYCN, MYD88, MYO18A, MYO1B, NBN, NCOA2, NCOR1, NEK2, NELL2, NF1, NF2, NFE2L2, NFKBIA, NIPA2, 

NKX2-1, NKX2-8, NKX3-1, NOTCH1, NOTCH2, NOTCH3, NPM1, NRAS, NRCAM, NRG1, NSD1, NT5C2, NTRK1, NTRK2, NTRK3, NUP93, OR5L1, 

OTOP1, PAK3, PALB2, PAX3, PAX5, PAX7, PBRM1, PCBP1, PCGF2, PDCD1LG2, PDGFRA, PDGFRB, PDK1, PDZRN3, PHF6, PHOX2B, PIK3C2B, 

PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PLCG2, PMS1, PMS2, PNP, POLD1, POLE, POT1, PPM1L, PPP2R1A, PPP2R2A, PRDM1, PREX2, 

PRF1, PRKAR1A, PRKCI, PRKDC, PRKN, PRPF40B, PRSS8, PSMB1, PSMB2, PSMB5, PSMD1, PSMD2, PTCH1, PTEN, PTGFR, PTPN11, PTPN12, 

PTPRD, QKI, RAC1, RAC2, RAD21, RAD50, RAD51, RAD51B, RAD51C, RAD51D, RAD54L, RAF1, RANBP2, RARA, RARB, RARG, RB1, RBM10, 

RECQL4, RET, RHBDF2, RHEB, RHOA, RICTOR, RIT1, RNF43, ROS1, RPS6KB1, RUNX1, RUNX1T1, RXRA, RXRB, RXRG, S1PR2, SAMD9L, SBDS, 

SCN11A, SDC4, SDHA, SDHAF2, SDHB, SDHC, SDHD, SEC16A, SEPT9, SETBP1, SETD2, SF1, SF3A1, SF3B1, SH2B3, SHH, SHOC2, SLC22A1, 

SLC31A1, SLC34A2, SLC45A3, SLC7A8, SLC9A9, SLCO1B1, SLIT2, SLX4, SMAD2, SMAD3, SMAD4, SMARCB1, SMARCE1, SMC1A, SMC3, SMO, 

SNCAIP, SOCS1, SOS1, SOX10, SOX2, SOX9, SPEG, SPEN, SPOP, SPRED1, SPTA1, SRC, SRSF2, SSTR1, STAG2, STAT3, STAT4, STK11, SUFU, 

SUZ12, SYK, SYNE3, TACC3, TAF1, TAS2R38, TBX20, TBX3, TCERG1, TCF7L2, TENT5C, TERC, TERT, TFG, TGFBR2, THSD7B, TIAF1, TMEM127, 

TMPRSS2, TNFRSF14, TOP1, TOP2A, TP53, TP53BP1, TP63, TPM3, TPM4, TPMT, TRAF5, TRIO, TRRAP, TSC1, TSC2, TSHR, TYK2, U2AF1, U2AF2, 

UBR3, UGT1A1, USP16, USP25, VCL, VEGFA, VHL, WEE1, WNK2, WRN, WT1, WWP1, XPA, XPC, XPO1, XRCC2, YAP1, YES1, ZBED4, ZBTB2, ZFHX3, 

ZIC3, ZMYM3, ZNF2, ZNF217, ZNF226, ZNF473, ZNF595, ZNF703, ZRSR2

FISH/CNA/IHC POSITIVE GENES

 MLH1  PROTEIN LACK OF EXPRESSION,  PD-L1  PROTEIN

OVEREXPRESSION,  PMS2  PROTEIN LACK OF EXPRESSION

FISH/CNA/IHC NEGATIVE GENES

 ABL1  TRANSLOCATION ABSENCE,  ALK  TRANSLOCATION ABSENCE, 

 BCR  TRANSLOCATION ABSENCE,  BRAF  TRANSLOCATION ABSENCE, 

 BRD4  TRANSLOCATION ABSENCE,  CD74  TRANSLOCATION

ABSENCE,  EGFR  TRANSLOCATION ABSENCE,  ERBB2  PROTEIN

NORMAL,  FGFR1  TRANSLOCATION ABSENCE,  FGFR2

 TRANSLOCATION ABSENCE,  FGFR3  TRANSLOCATION ABSENCE, 

 KIF5B  TRANSLOCATION ABSENCE,  MET  TRANSLOCATION ABSENCE, 

 MSH2  PROTEIN NORMAL,  MSH6  PROTEIN NORMAL,  NRG1

 TRANSLOCATION ABSENCE,  NTRK1  TRANSLOCATION ABSENCE, 

 NTRK2  TRANSLOCATION ABSENCE,  NTRK3  TRANSLOCATION

ABSENCE,  RAF1  TRANSLOCATION ABSENCE,  RARA  TRANSLOCATION

ABSENCE,  RET  TRANSLOCATION ABSENCE,  ROS1  TRANSLOCATION

ABSENCE,  TACC1  TRANSLOCATION ABSENCE,  TACC3

 TRANSLOCATION ABSENCE

MICROSATELLITE INSTABILITY

MSS

BIOMEDICAL INTERPRETATION

Liquid biopsy

Using liquid biopsy, circulating cell-free plasma DNA fragments can be analyzed to detect genomic changes. Tumor DNA constitutes only a small 

proportion of the circulating DNA, with the majority representing germline DNA derived from ruptured leukocytes or other benign cells. Currently

, it cannot be determined to what extent a blood sample contains tumor DNA.

The amount of circulating tumor DNA depends on many factors, including stage and tumor mass – circulating tumor DNA levels are low in case 

of early stage, non-metastatic disease or small tumor volume. It can happen in any stage of the disease that the amount of circulating cell-free 

DNA in a blood sample does not reach the limit of detection with next-generation sequencing (1). Therefore, it is possible that driver mutations 

present in the histology sample are not detected with DNA analysis of liquid biopsy.

References:

(1) Luke JJ et al., Cell Free DNA Working Group. Realizing the potential of plasma genotyping in an age of genotype-directed therapies. J Natl 

Cancer Inst. 2014 Aug 8;106(8). PubMed PMID: 25106647

Result of the tumor mutational burden (TMB) analysis
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BIOMEDICAL INTERPRETATION

The tumor mutational burden (TMB) value is 3.05 mutations/megabase. The calculation is based on the NGS analysis. Based on our database of 

calculated TMB values (n=1174), 67% of our cases had lower TMB values.

PEMBROLIZUMAB is approved by the FDA for the treatment of adult and pediatric patients with unresectable or metastatic TMB-high solid 

tumors.

The approval was based on the prospectively-planned retrospective analysis of the KEYNOTE-158 phase II trial (NCT02628067). According to 

study results, tissue TMB-high status (defined as 10 mutations/mb) was associated with improved outcomes with pembrolizumab monotherapy in 

previously treated, advanced solid tumor patients (n=790, 10 tumor types). The objective response rate was 29% (30/102) in the TMB-high group, 

28% (23/81) in the TMB-high group excluding patients with high or unknown MSI status, and 6% in (43/688) in the TMB-low group. As of data 

cutoff with a median follow-up of 37.1 months, the median duration of response had not been reached in the TMB-high group and was 33.1 

months in the TMB-low group. In this study, 13% of the tested patient were classified to be TMB-high and 87% to be TMB-low (1). In this study, 13% 

of the tested patients were classified as TMB-high and 87% as TMB-low (1). Because the numerical value of TMB is dependent on the applied 

NGS panel, we defined TMB-high status as TMB values higher than 87% of all samples previously tested.

Immunotherapy-treated patients (n=151) with various tumor types (n=17) were analyzed in a study. High TMB was defined as 20 mutations/mb. 

The RR (response rate) for patients with high vs. low/intermediate TMB was 22/38 (58%) vs. 23/113 (20%). Results were similar when anti-PD-1/PD-

L1 monotherapy was analyzed (n=102 patients), with a positive correlation between higher TMB and more favorable outcome (2). A similar benefit 

was obtained upon analyzing microsatellite stable (MSS), high versus low/intermediate TMB samples from 60 patients (14 different histologies) 

treated with anti-PD-1/PD-L1 monotherapy, the median progression-free survival was 26.8 and 4.3 months (3).

Survival data of 1662 immunotherapy treated cancer patients were analyzed in a study. The top 20% of the TMB values were considered high in 

every histology group. Overall survival was significantly higher in the TMB-high group. Survival benefit was shown to be increasing with the level 

of TMB (4).

References:

(1) Marabelle A et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with 

pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020 Sep 10:S1470-

2045(20)30445-9. Epub ahead of print. PMID: 32919526

(2) Goodman AM et al., Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol Cancer 

Ther. 2017 Nov;16(11):2598-2608. Epub 2017 Aug 23. PMID: 28835386

(3) Goodman AM et al., Microsatellite-Stable Tumors with High Mutational Burden Benefit from Immunotherapy. Cancer Immunol Res. 2019 Oct;7

(10):1570-1573. Epub 2019 Aug 12. PMID: 31405947

(4) Samstein RM, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019 Feb;51(2):202-

206. Epub 2019 Jan 14. PMID: 30643254

The result of the MSI analysis

The tumor is microsatellite stable (MSS), microsatellite instability indicating mismatch-repair (MMR) deficiency was not detected. The result was 

determined by an NGS-based MSI detection method, that classifies MSI status based on the calculated MSI score.

The MSI score is determined by the ratio of unstable loci detected among total microsatellite loci analyzed (MSI score = N(unstable loci) / N(total 

loci)). Loci with insufficient coverage for instability calling are excluded from total loci. MSI status of the tumor is interpreted based on using a 

stability cutoff value of 0.2 for the MSI score. An MSI score lower than the cutoff value (MSI score < 0.2) is classified as MSS, while an MSI score 

greater than or equal to the cutoff (MSI score >= 0.2) is classified as MSI-HIGH.

In this analysis, the MSI score is below 0.2, so the sample is classified as MSS.

According to the scientific literature in the case of microsatellite unstable tumors, the efficacy of immunotherapies is higher compared to 

microsatellite stable tumors (1, 2).

References:

(1) Le DT et al., PD-1 blockade in mismatch repair deficient non-colorectal gastrointestinal cancers. J Clin Oncol 34, 2016 (suppl 4S; abstr 195)

(2) Le DT et al., PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015 Jun 25;372(26):2509-20. PubMed PMID: 

26028255

PD-L1 overexpression - targets

There is correlation in several tumor-types between PD-L1 overexpression and the efficacy of PD-1 and PD-L1 inhibitory immunotherapies (1, 2).
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BIOMEDICAL INTERPRETATION

PD-1 and PD-L1 inhibitors in clinical use are NIVOLUMAB, PEMBROLIZUMAB, AVELUMAB, ATEZOLIZUMAB, DURVALUMAB, CEMIPLIMAB, and D

OSTARLIMAB.

References:

(1) Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol Cancer Ther. 2015 Apr;14(4):847-56. doi: 

10.1158/1535-7163.MCT-14-0983. Epub 2015 Feb 18. Review. PubMed PMID: 25695955.

(2) Herbst RS et al., Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014 Nov 27;515(7528):

563-7. doi: 10.1038/nature14011. PubMed PMID: 25428504

MMR deficiency

The analyzed genes are components of the DNA mismatch repair system (MMR). Loss of expression of PMS2 alone is indicative of a defect in 

the PMS2 gene. However, combined loss of PMS2 and MLH1 suggests the defect lies in MLH1, as MLH1 is responsible for the stability of PMS2. A 

similar situation is seen with MSH6 and MSH2, with loss of MSH6 only indicating defective MSH6, whereas loss of expression of both proteins 

would indicate the defect is within MSH2 (1).

According to clinical data, immunotherapies with PD-1 and PD-L1 inhibitors proved to be effective in MMR deficient tumors (2).

PEMBROLIZUMAB is a human PD-1-blocking antibody approved by the FDA indicated for the treatment of microsatellite instability-high or MMR 

deficient solid cancer progressing following standard treatment, the EMA label includes tumor type restrictions. DOSTARLIMAB (PD-1 inhibitor) is 

approved by the FDA for the treatment of patients with MMR deficient recurrent or advanced solid tumors progressing on or after prior therapy. 

DOSTARLIMAB is also approved for the treatment of patients with recurrent or advanced MSI-H (EMA inclusion only) or dMMR endometrial 

cancer who have progressed on or following platinum-based chemotherapy.

In case of MMR deficiency, resistance has been observed during treatment with chemotherapeutic agents, like 5-FU, cisplatin and carboplatin. 

However, there was no decrease observed in the efficacy of oxaliplatin (3).

According to a retrospective study, pretreatment lung immune prognostic index (LIPI) might identify fast-progressors to immune checkpoint 

inhibitory (ICI) treatment among MSI-High or MMR deficient patients (n=151, 66% gastrointestinal, 22% gynecological). In response to ICI therapy, 

24-month OS rates were 71.1%, 54.2%, and 14.3%, and median PFS values were 20.9, 9.9, and 2.3 months for good, intermediate and poor LIPI 

risk groups, respectively (4).

In cohort F of the phase I GARNET trial, dostarlimab (anti-PD-1 antibody) resulted in an objective response rate (ORR) of 38.7% (41/106) among 

dMMR or POLE mutated status (5).non-endometrial solid tumor patients with 

In the Z1D subprotocol arm of the phase II NCI-MATCH trial, the efficacy of nivolumab (PD-1 inhibitor) was investigated among patients with 

noncolorectal MMR-deficient solid tumors. The ORR was 36% (15/42), the disease control rate (DCR) was 57% (24/42), the estimated 12-month 

PFS rate was 46.2%, the median OS was 17.3 months (6).

References:

(1) Richman S. Deficient mismatch repair: Read all about it (Review). Int J Oncol. 2015 Oct;47(4):1189-202. Epub 2015 Aug 12. Review. PMID: 
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(2) Viale G et al., Mismatch Repair Deficiency as a Predictive Biomarker for Immunotherapy Efficacy. Biomed Res Int. 2017;2017:4719194. Epub 

2017 Jul 10. Review. PMID: 28770222

(3) Devaud N, Gallinger S. Chemotherapy of MMR-deficient colorectal cancer. Fam Cancer. 2013 Jun;12(2):301-6. Review. PMID: 23539382

(4) Auclin E et al., 2P Lung immune prognostic index (LIPI) can identify the fast-progressor to immune checkpoints inhibitors (ICI) in microsatellite 

instability (MSI) or mismatch repair deficient (dMMR) tumours. Annals of Oncology. 2020;31(suppl_7):S1417-S1424. doi: 10.1016/j.annonc.

2020.10.487.

(5) Andre T et al., Safety and efficacy of anti–PD-1 antibody dostarlimab in patients (pts) with mismatch repair-deficient (dMMR) solid cancers: 

Results from GARNET study. Journal of Clinical Oncology. 2021;39(3_suppl):9-9. doi: 10.1200/JCO.2021.39.3_suppl.9.

(6) Azad NS et al., Nivolumab Is Effective in Mismatch Repair-Deficient Noncolorectal Cancers: Results From Arm Z1D-A Subprotocol of the NCI-

MATCH (EAY131) Study. J Clin Oncol. 2020 Jan 20;38(3):214-222. Epub 2019 Nov 25. PMID: 31765263

Mutational Signatures Associated with Defective DNA Mismatch Repair (Signature 6)

Mutational signature analysis (1-3) has been performed on the filtered variants of the NGS results. A significant fraction of the variants fits to 

signatures associated with defective DNA mismatch repair (MMR-D): signatures 6, 15, 20, and 26 (Defective DNA MMR / MSI (small INDELs)). 

Immune checkpoint inhibition therapies are in positive association with MMR-D (4-6).
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Immunotherapies in gastric and gastroesophageal junction (GEJ) cancer

Higher PD-L1 expression is correlated with worse prognosis in gastric cancer (1).

PEMBROLIZUMAB is approved in combination with platinum- and fluoropyrimidine-based chemotherapy for the treatment of locally advanced 

unresectable or metastatic esophageal and GEJ cancer (EMA additional condition: HER2 negative, PD-L1 with a CPS  10) based on the results of 

the KEYNOTE-590 trial.

In the KEYNOTE-062 phase III clinical trial treating PD-L1 positive gastric or GEJ cancer patients, first line pembrolizumab monotherapy was 

noninferior to chemotherapy for median overall survival (OS) in patients with CPS of 1 or greater (10.6 vs 11.1 months), though it prolonged OS in 

patients with CPS of 10 or greater (17.4 vs 10.8 months) (2).

NIVOLUMAB, in combination with chemotherapy, is approved as a first-line treatment for metastatic gastric, GEJ, and esophageal 

adenocarcinoma with PD-L1 overexpression combined positive score (CPS)  5 according to the EMA approval and irrespective of the PD-L1 

expression according to the FDA-approval. CPS >=5%In the CheckMate 649 phase III clinical trial, in patients with PD-L1 positive ( ) gastric, GEJ or 

esophageal adenocarcinoma, first line nivolumab + chemotherapy combination treatment resulted in a statistically significant improvement in OS 

and PFS compared with chemotherapy alone (median OS: 14.4 and 11.1 months; median PFS: 7.7 and 6.1 months) (3).

In a phase III placebo-controlled trial, the PD-1 blocker nivolumab resulted in significantly longer OS, PFS and higher response rate compared to 

placebo in non-selected pre-treated gastric or GEJ cancer patients (4). No data has been published regarding the relevance of PD-L1 expression 

in the efficacy of nivolumab. In the phase III CheckMate 577 trial, a in resected djuvant nivolumab treatment improved disease-free survival (DFS) 

esophageal or GEJ cancer following neoadjuvant chemoradiation therapy compared with placebo. According to the interim analysis, median 

DFS was 22.4 versus 11.0 months with nivolumab (n=532) and placebo (n=262), respectively (5). Based on the trial results, NIVOLUMAB was 

 who have received neoadjuvant granted approval for the adjuvant treatment of patients with resected esophageal or GEJ cancer

chemoradiotherapy.

In a phase III clinical trial (ATTRACTION-4) in HER2-negative gastric and GEJ cancer patients, first line nivolumab + chemotherapy combination 

therapy resulted in a statistically significant improvement in PFS compared with chemotherapy (median PFS: 10.45 and 8.34 months), but did not 

result in a statistically significant improvement in OS (median OS: 17.45 and 17.15 months) (6).

In a phase Ib study nivolumab + regorafenib combinational therapy reached 44% response rate (11/25) in heavily treated, microsatellite stable 

gastric cancer patients (KRAS status was not examined) (7).

According to a phase I/II trial, nivolumab + paclitaxel + ramucirumab demonstrated promising antitumor activity as the second-line treatment for 

advanced gastric cancer patients (8). The objective response rate (ORR) was 37.2%, the median PFS was 5.1 months.

In the EPOC1706 phase II trial, yrosine kinase inhibitor  showed anti-tumor activity in  the combination of lenvatinib (multi t ) and pembrolizumab  

patients with advanced gastric cancer Objective response was observed in 20 (69%) of 29 patients (1 as a first- or second-line treatment. 

complete response (CR) and 19 partial responses (PR)), and stable disease was observed in 9 patients (31%), m . edian PFS was 7.1 months Respon

se rates were 84% in patients with PD-L1 overexpression, and 40% in patients with normal PD-L1 expression (9).

In a phase II trial, the efficacy and safety of lenvatinib plus pembrolizumab were evaluated in patients with advanced gastric cancer, who 

received at least 2 prior lines of therapy. PD-L1 positivity was detected in 71% of the patients. The ORR was 10%. One patient had CR (3%), two 

had a PR (6%) and 12 patients (39%) had stable disease (SD). Disease control rate (DCR) was 48%, median PFS was 2.5 months, median OS was 

5.9 months (10).

In a phase Ib study, the combination of AK104 (PD-1/CTLA-4 bispecific antibody) plus mXELOX (oxaliplatin and capecitabine) was investigated in 

untreated patients with advanced gastric and gastroesophageal junction (G/GEJ) adenocarcinoma, regardless of PD-L1 status. Of 24 patients 

evaluable for antitumor activity, ORR was 66.7% including 2 CRs and 14 PRs. The DCR was 95.8%. Response was seen regardless of PD-L1 

status. At a median follow-up of 8.6 months, the 6-months PFS rate was 69.5% (11).
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The FDA granted orphan drug designation to APX005M, a monoclonal antibody that stimulates the antitumor immune response, for the 

treatment of patients with gastroesophageal junction cancer.

The FDA granted orphan drug designation to the anti-CLDN18.2 autologous CAR T-cell agent, CT041, for the treatment of patients with gastric 

and gastroesophageal junction (GEJ) adenocarcinoma. In a phase I clinical trial patients with CLDN18.2 positive advanced gastric or pancreatic 

adenocarcinoma received CT041 treatment. Among the 11 patients, 1 achieved a CR (gastric adenocarcinoma), 3 had PRs (2 gastric 

adenocarcinomas and 1 pancreatic adenocarcinoma), 5 had SD and 2 had progression of disease. The ORR was 33.3%, with a DCR of 75%. 

Median PFS was 130 days (12).

In a phase III clinical trial patients with locally advanced or metastatic gastric or GEJ adenocarcinoma received sintilimab in combination with 

chemotherapy (S+C) or placebo plus chemotherapy (P+C) as first-line treatment. S+C showed a significant improvement in OS vs P+C in patients 

with CPS5 (median 18.4 vs 12.9 months) and all patients (median 15.2 vs 12.3 months). PFS was superior with S+C vs P+C in patients with CPS5 

and all patients. The ORR was 72.8% in the S+C arm and 59.6% in the P+C arm in patients with CPS5 and 65.1% (S+C) vs 58.7% (P+C) in all 

patients (13).
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Molecular alterations and mechanisms associated with resistance / reduced efficacy of immunotherapies
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Based on preclinical and clinical evidence, genetic alterations that may result in decreased efficacy or resistance to immunotherapies are loss of 

function mutations in the B2M (1), CBLB (2), JAK1/2 (3-6), NSD1 (7), PTEN (8, 9), CDKN2A (10) and STK11 (11-13) genes as well as deletion of TET2 

(14), and the activation of the WNT/beta-catenin signalling pathway (15). IDO expression (16) and IFNGR1 gene loss (6) may induce resistance to 

CTLA-4 targeting immunotherapies. Furthermore, immunotherapies were shown to be ineffective in case of non-small cell lung cancer (NSCLC) 

tumors harboring EGFR (17, 18), or HER2 mutations (19), ROS1 translocations (19) and MET exon 14 skipping mutations (20). Immunotherapies were 

also ineffective in case of medullary thyroid carcinoma (MTC) and NSCLC tumors with RET fusions, and mutations (21, 22). Mutations in RB1 have 

also been associated with resistance to immunotherapies (23, 24), but further studies are needed . to confirm this observation Poor clinical 

outcome and hyperprogression have been reported in patients with MDM2, MDM4 or MYC amplifications after receiving immunotherapy (18, 25, 

NTRK1 overexpression may also contribute to the development of immune checkpoint inhibitors (27).26). resistance to 

Epigenetic processes can also contribute to immunotherapy resistance. Epidrugs can restore sensitivity to immunotherapies (28). In a murine 

melanoma model the combination of panobinostat, a HDAC inhibitor and an anti-PD-1 agent B16-F10 yielded better response rates than those 

obtained with either drug alone (29). Combination of HDAC inhibitors and anti-PD-1 drugs proved to be safe in phase I and II clinical trials (30-32). 

There are several ongoing clinical trials using this combination (vorinostat + pembrolizumab: NCT02638090, NCT02538510, NCT02909452, 

NCT02437136, entinostat + pembrolizumab: NCT02453620, vorinostat + (pembrolizumab or nivolumab): NCT01928576, NCT04357873, 

NCT02437136, belinostat + nivolumab: NCT04315155, mocatnostat + pembrolizumab: NCT03220477, NCT02954991, mocetinostat + 

durvalumab: NCT02805660, NCT02993991, panobinostat + spartalizumab: NCT02890069, citarinostat + nivolumab: NCT02635061, 

NCT02718066). Preliminary results from a randomized phase II trial comparing the combination of vorinostat with pembrolizumab versus 

pembrolizumab alone in metastatic non-small cell lung cancer patients having PD-L1 expression > 1% showed a higher ORR in the combination 

arm (48% versus 25%,  = 0.026) (31). The ENCORE 601 phase II study evaluated the combination of entinostat and pembrolizumab in melanoma P

patients pretreated with anti PD-1 drugs. The ORR was 19% with a median duration of response of 12.5 months (33).
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Result of the copy number variation (CNV) analysis

CNV analysis was performed within the NGS test. Copy number variation means, that the detected copy number is different from the normal 

copy number (n=2). With NGS-based technology only approximation of copy number variations is feasible. 

There weren't any relevant copy number changes in the examined genes.

Results of the next generation sequencing (NGS)

The variants listed in the molecular profile were selected via bioinformatic and functional filtering. 

These variants have been uploaded into the Realtime Oncology Calculator for further biomedical functional interpretation and medical decision 

support.

 

The following filters of the QIAGEN Clinical Insight Interpret software were used:

 

- CONFIDENCE: Filtering is based on variant call quality (QUAL), read depth (DP), allele fraction (computed from AD), upstream filter (PASS) and 

genotype quality (GQ). If the presence of a variant was uncertain based on the sequencing quality scores, the alteration was filtered out.

- COMMON VARIANTS: The filter is used to exclude variants that are commonly observed in the healthy population. If the frequency of a certain 

variant is at least 10% in the population according to the 1000 Genomes Project, the ExAC or the NHLBI ESP exomes database, it was excluded 

from further analysis.
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- PREDICTED DELETERIOUS: The filter was used to identify variants in a dataset that have either predicted or observed evidence suggesting 

they could disrupt gene function or expression. The alterations, which are "benign" or "likely benign" according to the ACMG guideline were 

filtered out.

- CANCER DRIVER VARIANTS: The filter can be used to identify variants within a dataset that have predicted or established association with 

driving tumorigenesis or metastasis. Variants, which are related to cancer pathways, cell cycle regulation or cellular processes according to the 

scientific literature were selected. Alterations, which have been mentioned in the scientific literature related to cancer indication were also 

selected.

 

Other filtering methods used besides the Variant Analysis:

- Non-exonic alterations were excluded

- Further bioinformatic filtering was used considering other sequencing quality scores

 

The filtered variants are listed in the molecular profile of the patient.

Databases used for the interpretation of the detected alterations:

 

NCBI dbSNP (National Center for Biotechnology Information, Single Nucleotide Polymorphism database): Database dbSNP serves as a central 

repository for both single base nucleotide substitutions and short deletion and insertion polymorphisms detected as germline variants in either 

healthy population or in patients with various diseases (including, but not only cancer patients).

NCBI ClinVar: It is a publicly available archive of relations between human variations and phenotypes (clinical significance), with supporting 

evidence. It is not restricted to cancer diseases.

SNPEffect: This database contains the clinical relevance of single nucleotide mutations/polymorphisms based on OMIM and other databases and 

in silico predictions.

IARC (International Agency for Research on Cancer) TP53 Database: The IARC TP53 Database compiles various types of data and information 

on human TP53 gene variations related to cancer. Data is compiled from peer-reviewed literature and generalized databases. Functional 

classification of the mutations based on the overall transcriptional activity on 8 different promoters can also be found in the database.

BRCA Exchange: BRCA Exchange contains functional information about and classification of BRCA1 and BRCA2 mutations.

UniProt: UniProt is a knowledgebase of protein sequences and their function.

 

Functional interpretation of the detected alterations:

The detected genetic alterations were classified into the following categories by the Molecular Treatment Calculator (MTC), based on their 

functional consequences and their contribution to tumor formation (gains selective growth advantage compared to healthy cells): driver, variant 

of unknown significance in a driver gene (VUS, driver gene), non-confirmed driver, biomarker, variant of unknown significance (VUS), non-driver.

The algorithm calculates with positive score, in case of scientific evidence describing that a mutation or a gene contributes to cancer formation. 

It calculates with negative score, in case of scientific evidence describing that a mutation or a gene does not contribute to cancer formation.

The classification of a given variant is based on evidence describing the given alteration, the mutant gene or other specific mutations of the 

same gene as driver alterations. The algorithm summarizes and biases the related evidence and calculates the aggregated evidence level (AEL).

Driver: The algorithm classifies variants as drivers if there is available matching evidence in the database (describing the detected alteration) and 

it has a positive AEL.

Variant of unknown significance in a driver gene (VUS in a driver gene): In case of these variants there is no available matching evidence. The 

classification is based on evidence describing the mutant gene or other specific mutations of the same gene as drivers.

VUS (variant of unknown significance): There is no available evidence regarding the given alteration, the mutant gene or other specific mutations 

of the same gene.

Biomarker: These alterations are associated with the efficacy of a targeted drug based on matching scientific evidence (describing the detected 

alteration), but it does not fulfill the criteria to be a driver.

Conflicting driver: In case of these variants the number and level of the available matching evidence describing the detected alteration as a 

driver is limited.
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Non-driver: The AEL values of these variants are negative.

ERBB2-V842I

According to the ClinVar database, this is a pathogenic alteration. It is an activating mutation in the kinase domain. In colorectal cancer cell lines, 

the variant caused resistance against cetuximab and panitumumab, but is was sensitive to neratinib or afatinib. The mutation was not sensitive to 

trastuzumab (1). The variant showed sensitivity to neratinib or lapatinib in a breast cell line (2). A breast cancer patient with ERBB2-V842I and 

ERBB2-S310F mutations had a stable disease longer than 30 weeks on neratinib treatment (3).
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ERBB2 (HER2) mutant gene - targets

HER2 inhibitors can be beneficial in HER2 mutant tumors (1). HER2 inhibitors in clinical use are TRASTUZUMAB, PERTUZUMAB, LAPATINIB, T-

MARGETUXIMAB, topoisomerase-I inhibitor antibody-drug conjugate, DM1, AFATINIB,  NERATINIB, TUCATINIB, and the anti-HER2 and 

TRASTUZUMAB DERUXTECAN.

HER2 activation causes resistance against EGFR inhibitor monotherapies and endocrine therapies.

In a phase II trial, TRASTUZUMAB DERUXTECAN showed efficacy in patients with central nervous system metastases (CNS subgroup: ORR: 

58.3%, mPFS: 18.1 months) (2).
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ERBB2 (HER2) mutant gastric cancer

In a current clinical trial, neratinib is tested in HER2 mutation-positive or EGFR-amplified solid tumors (NCT01953926).

TRASTUZUMAB is registered in HER2-positive gastric and gastroesophageal junction (GEJ) tumors. TRASTUZUMAB DERUXTECAN is registered 

by the FDA in patients with locally advanced or metastatic HER2-positive gastric or GEJ adenocarcinoma after treatment with trastuzumab. Other 

HER2 inhibitors have been registered in the indication for breast and lung cancer.

Molecular alterations and mechanisms associated with resistance / reduced efficacy in case of HER2 inhibition

Based on preclinical and clinical evidence, decreased efficacy of, or resistance to HER2 inhibitors may arise due to various genetic alterations 

and mechanisms.

Different mutations in the HER2 gene might reduce the efficacy of different HER2 inhibitors or result in resistance (1-4).

Activating mutations in the following genes can be mentioned in a negative association with the efficacy of HER2 inhibitors: PIK3CA (1-3, 5, 6), 

AKT1 (3), PIK3R1 (3), and KRAS ( ).7, 8

The amplification and/or overexpression of the following genes might induce resistance to HER2 inhibitors: HER3 (1-3), EGFR (2, 3, 5), FGFR1 (6), 

FGF3/4/19 (6), PIK3CA (3), AKT2 (3, 9), IGF1R (2, 10, 11), MET (1, 3, 12), CDK12 (13, 14), CCND1 (15), MUC4 (1-3, 16), MIR4728 (17), PD-L1 (5). The 

increased activity of the CYP3A4 metabolizing enzyme (18), or the overexpression of the ABCB1 transporter protein (19) may also confer 

resistance to HER2 inhibitors. The activation of the PI3K-AKT pathway (1-3, 6, 7), MEK (2), MAPK (2), mTOR (2, 7), FGFR (6), or SRC (20) pathways 

may also result in reduced efficacy of HER2 inhibition.

Furthermore, loss-of-function alterations or lack of protein expression in the following genes, may also confer resistance to HER2 inhibitors: 

PTEN (1-3, 5, 19), INPP4B (3), CCNB1 (5), SLC46A3 (5, 19), HER2 (5, 19), PCGF2 (21), FOXO1 (22).
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FGFR2-C382R

According to the ClinVar database, it is a likely pathogenic alteration. (1), lung squamous This alteration has been detected in endometrial cancer 

cell carcinoma and cervical carcinoma (2). The mutation affects the transmembrane domain of the FGFR protein, resulting in gain of function that 

causes oncogenic transformation in cellular experimental systems and is sensitive to FGFR2 inhibition (2-4). An intrahepatic cholangiocarcinoma 

patient carrying C382R mutation showed partial response to pemigatinib (5).
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FGFR2 mutant gene – targets

FGFR2 (fibroblast growth factor receptor 2) is a member of the FGFR receptor tyrosine kinase gene family, and the FGFR2 protein it encodes 

acts as a receptor for fibroblast growth factor (FGF). The FGF ligand is bound by the extracellular region of the protein, which activates signaling 

pathways that regulate cell division through activation of cytoplasmic tyrosine kinase.

For gain of function FGFR mutations, FGFR inhibitors may be effective (1). Multi-tyrosine kinase inhibitors  that inhibit the FGFR   in clinical use

signaling pathway include LENVATINIB, NINTEDANIB, PAZOPANIB, REGORAFENIB, and PONATINIB, and are less specific than SORAFENIB and 

SUNITINIB. The FDA-approved FGFR inhibitor in the indication of urothelial tumors is ERDAFITINIB.

References:

(1) Brady N et al., The FGF / FGFR axis as a therapeutic target in breast cancer. Expert Rev Endocrinol Metab. 2013 Jul; 8 (4): 391–402. PubMed 

PMID: 25400686

Molecular alterations and mechanisms associated with resistance / reduced efficacy in case of FGFR inhibition

Based on preclinical and clinical evidence, decreased efficacy of or resistance to FGFR inhibitors may arise due to various genetic alterations 

and mechanisms.

FGFR gatekeeper mutations (1-4) and secondary FGFR2 kinase domain mutations (5, 6) have been described in a negative association with the 

efficacy of FGFR inhibitors.

The amplification and/or overexpression of the following genes might induce resistance to FGFR inhibitors: NRAS (7), MET (7, 8), ABCG2 (9).

The activation of the STAT3 (10), EPHB3 (11), HER2/3 (12), EGFR (13), PI3K-AKT (14) or RAS-MAPK pathways (15) may also result in reduced efficacy 

of FGFR inhibition.

The presence of fusions, or translocations of the BRAF (16) or FGFR2 (17) genes may also lead to the decreased efficacy of FGFR inhibition.

Furthermore, loss-of-function alterations (mutations, gene loss), downregulation or lack of protein expression in the following genes, may also 

confer resistance to FGFR inhibitors: DUSP6 (7), RASA1 (9), PTEN (18), PHLDA1 (19), GSK3beta (20).
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ARID2-R1272*

This alteration is listed as pathogenic in the ClinVar database, in association with Coffin-Siris syndrome. This nonsense mutation hits a position of 

the ARID2 gene, which is resistant to nonsense-mediated decay (NMD), thus it most probably does not trigger degradation of the mutant mRNA 

(1). By affecting a long protein-coding exon of the gene (rank: 15/21), the mutation leads to the expression of a transcript variant encoding a 

truncated protein variant compared with the wild-type protein (1272 vs 1835 amino acids). Thus functional loss is highly likely.
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ARID2 mutant gene – targets

The ARID2 tumor suppressor protein plays a role in the DNA damage response (DDR) (1, 2). Preclinical results suggest that ARID2 deficiency 

sensitizes to PARP inhibition and to cisplatin and etoposide (2).
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DNMT3A-W297*

According to the ClinVar database, it is a likely pathogenic alteration. Due to the premature STOP codon (nonsense mutation) in the DNMT3A 

gene, a variant encoding a substantially shorter protein version is generated, thus loss of function is highly likely.

DNMT3A mutant gene - targets

DNMT3A is a DNA methyltransferase  protein. It has oncogenic and tumor suppressor functions as well (1). In the case of DNMT3A loss-of-

function mutations, DOT1L target gene and pinometostat agent can be mentioned in positive association (2).
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SMARCA4-R1077*

According to the ClinVar database, it is a likely pathogenic alteration. Due to the premature STOP codon (nonsense mutation) in the SMARCA4 

gene, a variant encoding a substantially shorter protein version is generated, thus loss of function is highly likely.

SMARCA4 mutant gene - targets

SMARCA4 (BRG1) is a tumor suppressor gene, encoding the SMARCA4 protein, a key component of the SWI/SNF chromatin 

remodeling complex. SMARCA4 is frequently inactivated in different cancer types (1).

In case of its loss-of-function alterations indirect targets can be mentioned in positive association. According to preclinical data, SMARCA2 (BRM) 

(2), EZH2 (3, 4), or AURKA (5) inhibition might be effective in SMARCA4 mutant cancers.

TAZEMETOSTAT is an FDA approved EZH2 inhibitor for the treatment of follicular lymphoma and epitheloid sarcoma. In a phase I trial, 

tazemetostat showed efficacy in solid tumors patients with SMARCB1 or SMARCA4 loss, disease control was observed in 5 (3 rhabdoid tumors, 2 

epitheloid sarcoma) of 13 patients (6). Tazemetostat is currently tested in phase II trial for the treatment of cancers with EZH2, SMARCB1, or 

SMARCA4 gene mutations (NCT03213665).

In non-small cell lung cancer (NSCLC) preclinical models, in the presence of SMARCA4 loss-of-function mutations, the activity of AURKA was 

demonstrated to be essential, and the AURKA inhibitor VX-680 showed anti-tumor activity (5).

According to clinical data, loss of SMARCA4 expression is associated with increased efficacy of adjuvant cisplatin-based chemotherapy in 

NSCLC patients (7).

In a study analyzing breast cancer patient samples and performing in vitro experiments, the loss of SWI/SNF complex was indicated as a 

resistance mechanism to topoisomerase II inhibitors (8).

In a study, patients with lung adenocarcinoma, treated with immunotherapy, carrying coexisting mutations in at least two genes among KEAP1, 

STK11, PBRM1 and SMARCA4, had significantly shorter survival compared to the wild-type (WT) group. Furthermore, patients with co-mutations 

harbored higher TMB than the WT group (9).
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This variant is not listed in the ClinVar database. This frameshift mutation hits a position of the KMT2D gene, which is resistant to nonsense-

mediated decay (NMD), thus it most probably does not trigger degradation of the mutant mRNA (1). By affecting a long protein-coding exon of 

the gene (rank: 11/55), the mutation leads to the expression of a transcript variant encoding a truncated protein variant compared with the wild-

type protein (931 vs 5537 amino acids, and possessing an altered 365 amino acid long C-terminal sequence. Thus functional loss is highly likely.
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KMT2D mutant gene - targets

KMT2D/MLL2 is a histone methyltransferase that regulates transcription. Its role in tumorigenesis is controversial: some sources associate loss-

of-function mutations of KMT2D with decreased cell proliferation and migration (1-3), while other sources point to the tumor suppressor function 

of the gene stating that KMT2D-deficiency increases tumor growth (e.g. via inducing genomic instability) (4, 5).

It has also been reported that the MLL2 protein is part of an ER-alpha coactivatior complex. Inhibition (loss of function) of MLL2 decreased the 

estrogen-induced expression of ER-alpha target genes, and reduced tumor cell growth (6).

According to a study using a multivariate Cox regression model, KMT2D mutation was one of the most significant prognostic factors in NSCLC. 

The KMT2D mutation rate was 17.5% in NSCLC. Patients with mutant KMT2D had significantly lower median OS (9.97 vs. 30.2 months; P < .0001) 

and median PFS (8.46 vs. 24.1 months; P = .0004) compared with patients with wild-type KMT2D (7).             

According to preclinical evidence, KMT2D-deficiency sensitizes to the non-chemotherapeutic agent AICAR (aminoimidazole-carboxamide-

ribonucleotide) (8). AICAR is an AMP homolog, that inhibits angiogenesis and induces apoptosis through activating the protein AMPK, and 

thereby inhibits tumor growth (9). AICAR treatment proved to be effective in a clinical trial involving B-cell chronic lymphocytic leukemia patients 

(10, 11).
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Frameshift mutations

Frameshift mutations, resulting from short insertions and deletions, can cause premature termination codons (PTCs) and are susceptible to 

degradation at the mRNA level through the process of nonsense-mediated decay (NMD). NMD normally functions as a surveillance pathway to 

protect eukaryotic cells from the toxic accumulation of truncated proteins, but a subset of frameshift mutations may escape NMD degradation (1) 

and create alternative open reading frames (ORFs) with novel tumor-specific sequences (neoantigens), that are distinct from wild-type encoding 

antigens (2). These neoantigens may contribute substantially to directing anti-tumor immunity in low-TMB patients (1, 3), and could be targeted by 

immunotherapy. Suggesting that frameshift mutations could be of significance despite their overall low frequency compared to single nucleotide 

variations (SNVs) (4, 5).
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NMD efficiency is reduced in the last exon of the genes, in the penultimate exon within 50 nucleotides of the 3' exon junction, in the first 150 

llele-specific frameshift indels (fs-indels) detection in paired DNA and RNA nucleotides of exon 1, and in exons longer than 400 nucleotids (3). A

sequencing data (n=453, TCGA) revealed that expressed fs-indels are enriched in genomic positions predicted to escape NMD, and associated 

with higher protein expression, consistent with NMD escape rules (3).

Analysis of TCGA demonstrated that frameshift-derived neoantigens were present in every cancer type (4), with the highest prevalence in renal 

cell, breast invasive lobular and colorectal carcinomas (6).

Compared with non-synonymous SNV (nsSNV) mutations, frameshift mutations were observed to generate higher load of high-binding-affinity 

neoantigens in several cancer types, including malignant melanoma, renal cell carcinoma, head and neck squamous cell carcinoma and lung 

cancer (4, 5, 6), and had been associated with increased infiltration of cytotoxic T-cells and better responses to immune checkpoint inhibitors 

(ICIs) (3, 4, 6, 7). In malignant melanoma cohorts, the number of expressed frameshift mutations were found to be a stronger predictor for ICI 

response than nsSNVs (1, 3).

A subset of frameshift mutations, with highly elongated neoORFs, were found to be significantly enriched for immunogenic reactivity (1, 3).

In the present sample 1 frameshift mutation was detected that is located in an NMD-resistant position (KMT2D-P565fs*365), thus, the emergence 

of a 365-amino-acid neopeptide is likely.
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ARID1A-Q766fs*67

This variant is not listed in the ClinVar database. Due to the frameshift mutation in the ARID1A gene, a variant encoding a substantially shorter 

protein version is generated, thus loss of function is highly likely.

ARID1A mutant gene - targets

ARID1A inactivation leads to decreased mismatch repair. ARID1A deficiency correlated with microsatellite instability in a preclinical study (1), and 

in gastric-, and colorectal cancer patients (2). According to a study, higher TMB values and higher PD-L1 expression was found in ARID1A mutant 

PD-L1 inhibitors have been shown to be more efficient in ARID1A mutant gastrointestinal (GI) tumors, than in ARID1A-wildtype GI cancers (3). 

mouse models than in wild-type ones (1). EZH2 (4), YES1 (5), PI3K/AKT (6), and PARP (7) inhibitors are also in positive association with ARID1A 

inactivation. ARID1A loss is in synthetic lethal interaction with dasatinib, a compound in clinical use (5). TAZEMETOSTAT is an FDA approved 

EZH2 inhibitor. PD-L1 inhibitors in clinical use are AVELUMAB, ATEZOLIZUMAB, and DURVALUMAB. A YES1 inhibitor in clinical use is 

DASATINIB. PI3K inhibitors in clinical use are IDEALISIB, COPANLISIB (FDA only), ALPELISIB, and DUVELISIB. PARP inhibitors in clinical use are 

OLAPARIB, RUCAPARIB, TALAZOPARIB, and NIRAPARIB.

According to a case study, PEMBPROLIZUMAB monotherapy has been shown to be effective in a patient with lung adenocarcinoma, adrenal 

metastasis, where PDL-1 overexpression, high TMB and ARID1A mutation have been identified. After 5 months, PET/CT images showed an 

important reduction of uptake and dimensions of the lung lesion and complete response of adrenal mass (8).

In another case study, an ARID1A mutant, PD-L1 negative, MSS, TMB-Low ovarian tumor patient achieved complete remission with 9 cycles of 

PEMBPROLIZUMAB and BEVACIZUMAB. The patient received prior chemotherapy (9).
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Molecular alterations and mechanisms associated with resistance / reduced efficacy in case of PARP inhibition

Based on preclinical and clinical evidence, decreased efficacy of, or resistance to PARP inhibitors may arise due to various genetic alterations 

and mechanisms.

Secondary mutations in the BRCA1, BRCA2 (1-7), RAD51C, RAD51D (5-7), and PALB2 (5) genes, which restore protein function, may reduce the 

efficacy of different PARP inhibitors or result in resistance.

Mutations affecting the RING and BRCT domains of the BRCA1 gene, the BRCA1-11q splice variant, as well as fusions of the BRCA1 gene, may 

also contribute to the decrease in the efficacy of PARP inhibition (3-7).

Activating mutations in the HRAS, KRAS, NRAS genes can be mentioned in a negative association with the efficacy of PARP inhibitors (8). 

However, in the case of activated KRAS-MAPK signaling, MEK plus PARP inhibition resulted in a synergistic effect in several cell lines (8-10), as 

PARP and MEK inhibitors mutually block adaptive responses to the other drug, resulting in synthetic lethality. Thus, the combination of MEK and 

PARP inhibitors is currently being tested in several clinical trials (NCT03162627, NCT03637491).

The amplification and/or overexpression of the following genes might induce resistance to PARP inhibitors: HOXA9 (1, 4), MET (4), EHMT1/2 (6), 

MIR622 (4, 6, 7), MIR493 (6, 7), FANCD2 (7), RAD51 (11), CCNE1 (12-14), CDK12 (15), CDK18 (7, 16), NBN (17).

The overexpression of the ABCB1 transporter protein (1-7), the activation of the PI3K/AKT/mTOR (4, 18), or the Wnt/beta-catenin (6, 7) pathways, 

furthermore the activation of RPS6 (1, 4) or ATR (7) may also confer resistance to PARP inhibitors. In the case of activated PI3K-AKT-mTOR 

signaling, PI3K/mTOR plus PARP inhibition resulted in a synergistic effect in several cell lines (10, 19, 20), and the combination of PI3K plus PARP 

inhibition has also been shown to be effective in a phase I clinical trial (21). The combination of PI3K/AKT/mTOR and PARP inhibitors is currently 

being tested in several clinical trials (NCT03154281, NCT02208375, NCT03586661).

Furthermore, loss-of-function alterations or lack of protein expression in several genes, may also confer resistance to PARP inhibitors.

Loss of function of TP53BP1 (1-7), RIF1 (3, 5, 7), or genes encoding the proteins of the Shieldin complex (MAD2L2, SHLD1, SHLD2, SHLD3 (1, 5-7)), 

as well as PAXIP1, DCLRE1C (5), or CTC1, STN1, TEN1 (5) which form the CST complex, furthermore the loss of HELB (5), DYNLL1 (6), EMI1 (6, 7) 

may contribute to the restoration of homologous recombination repair, resulting in reduced efficacy of PARP inhibition.

Loss-function alterations of the PAXIP1 (4-7), CHD4 (5, 7), EZH2 (5-7), MUS81 (5-7), SMARCAL1 (5-7), E2F7 (6), RADX (7) genes can also cause 

resistance to PARP inhibitors through the stabilization of the replication fork.

PARP1 (1, 2, 5-7), PARG (5, 7), or ADPRS (ARH3) gene loss (22), as well as PARP1 loss-of-function mutations (5-7) may also contribute to the 

development of PARP inhibitor resistance.

Furthermore, loss-of-function alterations in the SLFN11 (5, 6), MUTYH (23), OGG1 (23), and JMJD1C (24) genes can also be associated with 

decreased efficacy of PARP inhibition.
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FBXO11-I520fs*15

This variant is not listed in the ClinVar database. Due to the frameshift mutation in the FBXO11 gene, a variant encoding a substantially shorter 

protein version is generated, thus loss of function is highly likely. Loss of FBXO11 function has no known role in tumorigenesis. 

JUN-S37fs*69

This variant is not listed in the ClinVar database. Due to the frameshift mutation in the JUN gene, a variant encoding a substantially shorter 

protein version is generated, thus loss of function is highly likely.

CYP2D6-R380H

Its effect on enzymatic activity of CYP2D6 is unknown.
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Molecular alterations and mechanisms associated with resistance / reduced efficacy in case of angiogenesis inhibitors

Based on preclinical and clinical evidence, decreased efficacy of or resistance to angiogenesis inhibitors may arise due to various genetic 

alterations and mechanisms.

Amplification or overexpression of angiogenic and lymphangiogenic mediators such as FGF1/2, VEGF, PDGF, PIGF, EFNA1/2, IL8, ANGPT1/2, 

EGF, G-CSF, HGF, IGF1, SDF-1, TGF can be mentioned in a negative association with the efficacy of angiogenesis inhibitors (1, 2).

Molecular alterations in general that may also cause resistance to each antiangiogenic compound or reduce their efficacy include the following 

growth factor receptors, such as VEGFR, FGFR, EGFR, PDGFR, IGF1R, MET, and alterations that activate their downstream signaling pathways, 

such as PI3K/AKT/mTOR, RAS/RAF/MEK/ERK, JAK/STAT, as well as activation of the following genes or signaling pathways: AXL, EPHA2, HIF-1a

/2a, JNK, SRC, NF-kB, NOTCH1, TGF-a/b, BCLAF1, CCR2, CCR7, FOXF1, MDM2, NRF2, PIN1, POLR1D, PSMD10, RIT1, TBX5, XPO1, YAP, YB1, and 

PD-1/PD-L1 overexpression. Furthermore, PTEN inactivation and DUSP6, FBXW7, KEAP1, MED12, IFNG, IFNG, IFNGR, PTPRD, PTPRT loss-of-

function, as well as certain polymorphisms in the ABCB1, CYP3A5, IL8, PXR genes, or also ABCB1, CYP3A4, MDR1 overexpression may reduce 

the efficacy of certain angiogenesis inhibitors (3, 4). In the report, alterations associated with reduced efficacy are calculated with a negative 

score in the aggregated evidence level (AEL) of each antiangiogenic compound.

According to a preclinical study, loss of TP53 function may result in reduced efficacy of VEGFR2 inhibition (5). However, conflicting results were 

obtained in several clinical trials, in which TP53 mutant status (vs. wild type) associated with longer survival in case of bevacizumab- or 

pazopanib-containing treatments (6-8). In two other trials no significant association was found between bevacizumab- or ramucirumab-containing 

therapies and TP53 expression or mutant status (9, 10).
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This report was generated by Genomate , a clinical decision support AI-based software system for precision oncology. The clinical utility of Genomate  was assessed by analyzing the clinical 
TM TM

data of patients treated in the SHIVA01 targeted therapy basket trial. For more details, see Petak I et al. NPJ Precis Oncol. 2021 Jun 23;5(1):59. 

Through its complex algorithms, Genomate  considers the full complexity of the molecular profile, including the interaction between co-occurring genetic alterations. Genomate  aggregates on 
TM TM

average per report 500-1000 pieces of evidence, using a series of complex standardized algorithms to prioritize driver genetic alterations, targets, and molecularly targeted agents associated 

with the patients tumors molecular profile, rendering an automatically calculated score, the Aggregated Evidence Level (AEL). The AEL of a particular molecularly targeted agent is influenced by 

the aggregated AEL of drivers and targets a treatment is associated with, as well as the AEL of the associations between the treatment and these drivers and targets. The AEL of treatments may 

change if used in combinations, due to possible synergism at molecular level. The 2022 version of the system uses evidence-based 32,000+ driver-target-compound interactions in its 

computational model. 
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This report can be used and clinically interpreted only by physicians or other qualified healthcare professionals. It provides information about the AEL scores of drivers, targets and treatment 

options associated with the tumor type and molecular profile provided as an input for this analysis. The output scores depend on the type of molecular diagnostic assay used for the analysis. The 

physician may consider or disregard the information to choose between treatment options provided by this report. The drugs indicated in this report may or may not be registered and/or 

reimbursed in the specific tumor type in the country in which this report is used. The scores indicated in this report do not guarantee efficacy or lack of efficacy of any treatment. Genomate Health 

Inc. does not take responsibility for the content of referenced pieces of evidence, nor for any decision made by physicians. 

Genomate  is not considered a medical device in the U.S. according to the section 520 of the Food, Drug and Cosmetics Act. The system is a registered CE marked CLASS 1 medical device in 
TM

the European Union. For more information: info@genomate.health. 
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